

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR Secondary Co-Ed DAY CUM BOYS' RESIDENTIAL SCHOOL

Mid Term Examination- 2024

MATHEMATICS (041)

Class	: XII Science	Duration: 3		
Date:	16/09/24	MARKING SCHEME Max. Marks:		
Q	Answer	Scheme		
No.				
1	(D)	{2, 3, 4, 5}		
2	(D)	Not defined		
3	(B)	$0 < y < \frac{\pi}{2}$ or $\frac{\pi}{2} < y < \pi$		
4	(B)	2π		
		3		
5	(A)	Square matrix		
6	(A)	6		
7	(B)	2		
8	(D)	9		
9	(B)	+3		
10	(C)	4		
11	(B)	7		
		$\overline{2}$		
12	(A)	2		
13	(B)	-e ^{-x}		
14	(B)	4π		
15	(D)	no value of x		
16	(C)	1		
17	(D)	-2		
		$\frac{1}{x} + c$		
18	(A)	$\frac{(3x+4)^4}{(3x+4)^4} + c$		
		12		
19	(A)	Both A and R are true and R is the correct explanation of Λ		
20	(D)	A is false but R is true.		
21	Domain = $\{0, \pm 3, \pm 4, \pm 4\}$	5}.		
22				
	Since, cos is negative in second quadrant,			
	Principal value is $(\pi - \frac{\pi}{4}) = \frac{3\pi}{4}$			
	OR			
	$\cos^{-1}(\frac{\pi}{2}) = \frac{\pi}{3}$ and $\sin^{-1}(\frac{\pi}{2}) = \frac{\pi}{6}$			

$$\frac{\pi}{q} + 2\frac{\pi}{a} = \frac{2\pi}{a}$$
23 $\frac{dx}{dx} = a(1 + \cos\theta)$
 $\frac{dy}{dx} = 4 \sin\theta$
 $\frac{dy}{dx} = \frac{a\sin\theta}{a(1 + \cos\theta)} = \tan\frac{\theta}{a}$.
24 Let to the radius and A be the area of circle.
A = πr^2
 $\frac{dx}{dt} = 2\pi r^2 \frac{dr}{dt}$
 $= 2\pi r 7 c.0.5$
 $= 7\pi cm^2$
R
Marginal cost (MC) $= \frac{d(C(x))}{dx} = \frac{d}{x} (0.05x^3 - 0.02x^2 + 30x + 5000)$
 $= 0.0153x^2 - 0.04x + 30 = 0.135 - 0.12 + 30$
 $= 30.015$
Cost is Rs. 30.02
25 Let $1+2x^2 = t$, diff b/s w.r.t x, 4xdx=dt, dx = 1/4dt
 $\frac{1}{4}\int_{\tau}^{T} dt = \frac{1}{4}\log(t) + c$
 $\frac{1}{2}\log(1+2x^3) + c$
26 We have $f(x) = x+1 \forall x \in R$
For any $(x) = x+1 \forall x \in R$
For any $(x) = x+1 \forall x \in R$
For any $(x) = x+1 \forall x \in R$
For any $(x) = x+1 \forall x \in R$
For any $(x) = x+1 \forall x \in R$
For any $(x) = x+1 \forall x \in R$
For any $(x) = 100$ 27
(AB)' = $\begin{bmatrix} 10 & 40 \\ 3 & 9 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{bmatrix}$
Now, $AB = \begin{bmatrix} 10 & 40 \\ 27 & 1002 \\ (AB)' = \begin{bmatrix} 10 & 27 \\ 140 & 102 \end{bmatrix}$
Also, $B' = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 8 & 3 \end{bmatrix}$, $A' = \begin{bmatrix} 2 & 3 \\ 4 & 9 \\ 0 & 6 \end{bmatrix}$
 $B'A' = \begin{bmatrix} 10 & 27 \\ 440 & 102 \end{bmatrix}$
Hence, $(AB)' = B'A'$
OR
We have, $A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$, $A' = \begin{bmatrix} p & r \\ q \\ r \\ 2s \end{bmatrix}$
Also $A - A' = \begin{bmatrix} 0 & q - r \\ q - r & 0 \end{bmatrix} = \frac{1}{2}(A - A') = \begin{bmatrix} 0 & \frac{q-r}{2} \\ \frac{q-r}{2} & 0 \end{bmatrix}$

	$A = \frac{1}{(A + A^{2}) + \frac{1}{2}(A - A^{2})} = \begin{bmatrix} 2p & q + r \end{bmatrix} \begin{bmatrix} 0 & \frac{q - r}{2} \end{bmatrix}$		
	$A = \frac{1}{2} (A + A^{2}) + \frac{1}{2} (A - A^{2}) = \begin{bmatrix} 1 & 1 \\ q + r & 2s \end{bmatrix} + \begin{bmatrix} \frac{q - r}{2} & 0 \end{bmatrix}$		
28	Let $ A = 10$, A ⁻¹ exists		
	$A^{-1} = \frac{1}{ A } \operatorname{adj} A = \frac{1}{10} \begin{bmatrix} -2 & 4\\ -3 & 1 \end{bmatrix}$		
	Now, $AX=B$, $A^{-1}(AX) = \overline{A}^{-1}B$, $X = A^{-1}B$		
	$X = \frac{1}{10} \begin{bmatrix} -2 & 4 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$		
	$\mathbf{X} = \begin{bmatrix} 6 & 2 \\ 11 \end{bmatrix}$		
	$\begin{bmatrix} 2^{-1} \\ 2 \end{bmatrix}$		
29	Since $f(x)$ is continuous at every point of its domain $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = f(1)$		
	$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$ $\lim_{x \to 1^{-}} \left[F(1 - h) - A \right] = \lim_{x \to 1^{+}} \left[A(1 + h)^{2} + 2h(1 + h) \right] = F - A$		
	$\lim_{h \to 0^{+}} [5(1-n) - 4] = \lim_{h \to 0^{+}} [4(1+n)^{2} + 3b(1+n)] = 5 - 4$		
	3b = -1		
	b= -1		
	OR		
	Since , it's given that f is continuous on $[0,8]$ F(x) is continuous at $x=2$ and $x=4$		
	Therefore, LHL = $f(x)$ = RHL		
	At x=2,		
	$\lim_{x \to 2^-} f(x) = f(2)$		
	2a+b=4		
	At x=4, $\lim_{x \to 4^+} f(x) = f(4)$		
	8a+5b=14 On solving we get $a=3$, $b=12$		
	Sh borving we get u = 3, 6 = 12		
30	$f(x) = \tan x - 4x$, $f'(x) = \sec^2 x - 4$		
	$f'(x) < 0 \text{ for } -\frac{\pi}{3} < x < \frac{\pi}{3}$		
	Therefore, f(x) is strictly decreasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$		
31	We write, $x+2 = A\left[\frac{d}{dx}(2x^2+6x+5)\right] + B$		
	We get, $A = \frac{1}{4}, B = \frac{1}{2}$		
	$I = \frac{1}{4} \int \frac{4x+6}{2x^2+6x+5} dx + \frac{1}{2} \int \frac{dx}{2x^2+6x+5} dx$		
	$= \frac{1}{100} \left(\frac{2x^2 + 6x + 5}{100} + \frac{1}{2} \tan^{-1}(2x + 3) + c \right)$		
32	Z is the set of all integers and $R=\{(a, b): a, b \in Z \text{ and } a + b \text{ is even}\}$		
	Symmetric: $a+b$ is even, then $b+a$ is also even, hence r is symmetric		
	Transitive: a+b is even and b+c is even, then a+c is also even, hence R is transitive.		
22	Since, R is Reflexive, Symmetric and transitive therefore R is Equivalence relation.		
55	$[1 \ 2 \ 1] [7]$		
	$\begin{vmatrix} 1 & 0 & 3 \end{vmatrix} y \end{vmatrix} = \begin{vmatrix} 11 \end{vmatrix}, AX = B.$		
	$ \begin{array}{ccc} L2 & -3 & 0 \end{bmatrix} \begin{bmatrix} z \\ z \end{bmatrix} \begin{bmatrix} 1 \\ z \end{bmatrix} $ $ \begin{array}{c} A = 18 \\ A^{-1} \\ exists \end{array} $		

37	By using the concept of adjoint and inverse of matrix, we will have	
	i)	Rs1
	ii)	Rs 5
	iii)	Rs. 2
38	i)	$(2x^2 + 8xy)m^2$
	ii)	x²y =32
	iii)	Half of its width or length.
